Limit theorems for continuous-state branching processes with immigration

Chunhua Ma

Nankai University

(Based on a joint work with Clement Foucart and Linglong Yuan)

Central South University 2021/07/13

Chunhua Ma (NK)

Limit theorems for CBI processes

Definition (branching property and CSBP)

A non-negative Markov process $(X_t(x), t \ge 0)$ is a CSBP if for any $x, y \in \mathbb{R}_+$,

$$X_t(x+y) \stackrel{d}{=} X_t(x) + \tilde{X}_t(y)$$

where $(\tilde{X}_t(y), t \ge 0)$ is an independent copy of $(X_t(y), t \ge 0)$.

This ensures the existence of a map $t \to v_t(\lambda)$ s.t.

$$\mathbb{E}[e^{-\lambda X_t(x)}] = \exp(-xv_t(\lambda)) \text{ and } v_{s+t}(\lambda) = v_s \circ v_t(\lambda).$$

Chunhua Ma (NK)

Theorem (Characterization: Jirina (1958), Lamperti (1967))

 $t \mapsto v_t(\lambda)$ is the unique solution to the differential equation

$$\frac{\partial}{\partial t}v_t(\lambda) = -\Psi(v_t(\lambda)), \quad v_0(\lambda) = \lambda.$$

where $\rho:=\inf\{z>0;\Psi(z)\geq 0\}$ is the largest positive root of a Lévy-Khintchine function

$$\Psi(q) = \frac{\sigma^2}{2}q^2 - \beta q + \int_0^\infty \left(e^{-qx} - 1 + qx \mathbf{1}_{x \le 1}\right) \pi(dx)$$

Chunhua Ma (NK)

Limit theorems for CBI processes

□ ▷ < @ ▷ < E ▷ < E ▷ E · · ○ Q @ Central South University 20

Definition

Consider Galton-Watson branching processes defined inductively by

$$Z_{n+1} = \sum_{i=1}^{Z_n} \xi_i^{(n)}, \quad Z_0 = 1,$$

where $\xi_i^{(n)}$ = the number of children of *i* at generation *n* (i.i.d.) and Z_n = the number of particles at generation *n*.

•
$$\mathbb{E}[\xi_1^{(1)}] = 1$$
 (critical), $Var(\xi_1^{(1)}) = \sigma^2 < \infty$.

Theorem

- (a) (Kolmogorov (1938)) $\mathbb{P}(Z_n > 0) \sim 2/n\sigma^2$ as $n \to \infty$.
- (b) (Yaglom (1947)) $\mathbb{P}(Z_n/n \in \cdot | Z_n > 0) \xrightarrow{w} e$, where *e* is exponential with mean $\sigma^2/2$.
 - Consider a sequence of critical GW branching processes $\{Z_n^{(n)} : n \in \mathbb{N}\}$ with initial conditions $Z_0^{(n)}$ satisfying $Z_0^{(n)}/n \to x$. Define

$$X_t^{(n)} = Z_{[nt]}^{(n)}/n.$$

Then $X_t^{(n)}$ converges weakly to a Poisson sum of independent exponential masses, denoted by $X_t(x)$.

化白豆 化氟医化 医医小子医医白

Theorem

- (a) (Kolmogorov (1938)) $\mathbb{P}(Z_n > 0) \sim 2/n\sigma^2$ as $n \to \infty$.
- (b) (Yaglom (1947)) $\mathbb{P}(Z_n/n \in \cdot | Z_n > 0) \xrightarrow{w} e$, where *e* is exponential with mean $\sigma^2/2$.
 - Consider a sequence of critical GW branching processes $\{Z_n^{(n)} : n \in \mathbb{N}\}$ with initial conditions $Z_0^{(n)}$ satisfying $Z_0^{(n)}/n \to x$. Define

$$X_t^{(n)} = Z_{[nt]}^{(n)}/n.$$

Then $X_t^{(n)}$ converges weakly to a Poisson sum of independent exponential masses, denoted by $X_t(x)$.

Feller's Theorem: CSBPs

•
$$\mathbb{E}[e^{-\lambda X_t(x)}] = \exp(-xv_t(\lambda))$$
 and $v_t(\lambda) = \frac{\lambda}{1 + \frac{\sigma^2 \lambda t}{2}}$.

Theorem (Feller (1931, 1951))

 $X^{(n)} \stackrel{w}{\Rightarrow} X$ in $D(\mathbb{R}_+)$, where X is the unique solution of

$$X_t(x) = x + \sigma \int_0^t \sqrt{X_s(x)} dB_s$$

where B is one-dimensional Brownian motion.

Theorem (Dawson-Li (2012))

$$X_t(x) = x + \sigma \int_0^t \int_0^{X_s(x)} W(ds, du) + \int_0^t \int_0^\infty \int_0^{X_{s-}(x)} z \tilde{N}_0(ds, dz, du),$$

where W(ds, du) white noise on \mathbb{R}^2_+ with intensity dsdu, and $\widetilde{N}(ds, dz, du)$ compensated Poisson random measure on \mathbb{R}^3_+ with intensity $ds\pi(dz)du$

Chunhua Ma (NK)

Limit theorems for CBI processes

CSBP with immigration: CBI

• Laplace exponent of subordinator:

$$\Phi(q) = \beta q + \int_0^\infty (1 - e^{-qu}) \nu(du)$$

• Laplace exponent of a a spectrally positive Lévy process with finite mean:

$$\Psi(q) = bq + \frac{1}{2}\sigma^2 q^2 + \int_0^\infty (e^{-qu} - 1 + qu)\pi(du)$$

where
$$\int_0^\infty (u \wedge u^2) \pi(du) < \infty$$
.

Theorem (Kawazu-Watanbe (1971))

A CBI process with branching and immigration mechanisms Ψ and Φ , is a strong Markov process $(Y_t, t \ge 0)$ taking values in $[0, \infty)$ whose transition kernels are characterized by

$$\mathbb{E}_{x}[e^{-\lambda Y_{t}}] = \exp\left(-xv_{t}(\lambda) - \int_{0}^{t} \Phi(v_{s}(\lambda))ds\right)$$

Chunhua Ma (NK)

Theorem (Emilia Caballero et al. 2013)

A CBI (Ψ, Φ) process with initial value *x*, denoted by *Y*_t, solving the functional equation

$$Y_t = x + \xi_{\int_0^t Y_s ds} + \eta_t$$

where ξ_t is a spectrally positive Lévy process with Laplace exponent Ψ and η_t is a Lévy subordinator with Laplace exponent Φ .

Consider a special CBI process, where $\Psi(q) = aq + \frac{\sigma^2}{2}q^2 - \frac{\sigma_Z^{\alpha}}{\cos(\pi\alpha/2)}q^{\alpha}$ and $\Phi(q) = abq$, given by

$$dV_t = a(b - V_t)dt + \sigma \sqrt{V_t} dB_t + \sigma_Z \sqrt[\alpha]{V_t} dZ_t$$

where

- $B = (B_t, t \ge 0)$ a Browinan motion
- Z = (Z_t, t ≥ 0) a spectrally positive α-stable compensate Lévy process with parameter α ∈ (1, 2]
- Pathwise uniqueness of SDE, Fu and Li (SPA, 2010)
- The case of $\alpha = 2$, Cox-Ingersoll-Ross model (Econometrica, 1985).

□ ▷ < 률 ▷ < ≣ ▷ < ≣ ▷ < ≡ ○ Central South University 20

The Alpha-CIR as interest rate model

• Current sovereign bond markets with persistency of low interest rates and significant fluctuations at local extent.

Figure: 10 years interest rates of Euro area countries.

Chunhua Ma (NK)

Limit theorems for CBI processes

Centi

The zero-coupon price

Consider a zero-coupon bond of maturity *T* at time $t \le T$

$$B(t,T) = \mathbb{E}\Big[\exp\Big\{-\int_t^T V_s ds\Big\}\Big|\mathcal{F}_t\Big]$$

Proposition (Jiao-M.-Scotti, Finance Stoch., 2017)

(a) The bond price B(0, T) is decreasing with respect to α.
(b) J_t^y the number of jumps of V with jump size larger than y in [0, t]

$$\mathbb{E}\left[e^{-pJ_t^{y}}\right] = \exp\left(-l(p, y, t)r_0 - ab\int_0^t l(p, y, s)ds\right)$$

where l(p, y, t) is the unique solution of the following equation

$$\frac{\partial l(p, y, t)}{\partial t} = \sigma_Z^{\alpha} \int_y^{\infty} \left(1 - e^{-p - l(p, y, t)\zeta}\right) \mu_{\alpha}(d\zeta) - \Psi^{(y)}(l(p, y, t)),$$

with initial condition l(p, y, 0) = 0

Chunhua Ma (NK)

The zero-coupon price

Consider a zero-coupon bond of maturity *T* at time $t \le T$

$$B(t,T) = \mathbb{E}\Big[\exp\Big\{-\int_t^T V_s ds\Big\}\Big|\mathcal{F}_t\Big]$$

Proposition (Jiao-M.-Scotti, Finance Stoch., 2017)

(a) The bond price B(0,T) is decreasing with respect to α .

(b) J_t^y the number of jumps of V with jump size larger than y in [0, t],

$$\mathbb{E}\left[e^{-pJ_t^{y}}\right] = \exp\left(-l(p, y, t)r_0 - ab\int_0^t l(p, y, s)ds\right)$$

where l(p, y, t) is the unique solution of the following equation

$$\frac{\partial l(p, y, t)}{\partial t} = \sigma_Z^{\alpha} \int_y^{\infty} \left(1 - e^{-p - l(p, y, t)\zeta}\right) \mu_{\alpha}(d\zeta) - \Psi^{(y)}(l(p, y, t)),$$

with initial condition l(p, y, 0) = 0

Chunhua Ma (NK)

Conclusion: interpret the low interest

Figure: Bond price is decreasing w.r.t. α , which inversely related to the tail fatness. curve CIR (in red) corresponds to $\sigma_Z = 0$

 $\bullet\,$ The expected (first) Large jump time is increasing with $\alpha\,$

Chunhua Ma (NK)

Consider the Alpha-Heston model:

$$dS_t = S_t(rdt + \sqrt{V_t}dW_t)$$

$$dV_t = a(b - V_t)dt + \sigma\sqrt{V_t}dB_t + \sigma_Z \sqrt[\alpha]{V_t}dZ_t$$

where V follows the α -CIR model.

• The case of $\alpha = 2$, Heston stochastic volatility model (Review of Financial Studies, 1993)

Consider $\Sigma_{\text{VIX}}(T, k)$ be the implied volatility of call options written on VIX with maturity *T* and strike $K = e^k$

Proposition (Jiao-M.-Scotti-Zhou, Math. Finance, 2021)

The right wing of $\Sigma_{\text{VIX}}(T, k)$ has the following asymptotic shape:

$$\Sigma_{\text{VIX}}(T,k) \sim \left(\frac{\psi(2\alpha)}{T}\right)^{1/2} \sqrt{k}, \quad k \to +\infty.$$

where

$$\psi(q) = 2 - 4(\sqrt{q^2 + q} - q)$$

Proposition (continued)

The left wing of $\Sigma_{\text{VIX}}(T,k)$ has the following asymptotic shape as $k \downarrow \frac{1}{2} \log B(\Delta)$:

• if
$$\sigma > 0$$
, then $\Sigma_{\text{VIX}}^2(T,k) \sim D_{\sigma} \left(-\log\left(e^k - \sqrt{B(\Delta)}\right) \right)^{-1}$,
• if $\sigma = 0$, then $\Sigma_{\text{VIX}}^2(T,k) \sim D_0 \left(e^k - \sqrt{B(\Delta)}\right)^{\frac{2-\alpha}{\alpha-1}}$,

Limit theorems for CBI processes

Implied volatility: an upward-sloping smile

Figure: The implied volatility curves of the VIX options for different values of α with $a = 5, b = 0.144, \sigma = 0.25, \sigma_N = 0.3, \rho = 0, \text{ and } T = 0.25$

• Implied volatility of VIX options for the Heston model given by Nicolato *et al.* (2017): downward sloping!

Central South University 20

Chunhua Ma (NK)

Limit theorems for CBI processes

The simulation of the VIX

The following Figure provides a simulation of the variance process V for a period of T = 14, in comparison with the empirical VIX data (from 2004 to 2017). The parameters: a = 5, b = 0.14, $\sigma = 0.08$, $\sigma_Z = 1$ and $\alpha = 1.26$.

• Jiao-M.-Scotti-Sgarra (Energy Economics, 2019): power price on Italian market (2004-2015), $\alpha = 1.5$.

Central South University 20

Chunhua Ma (NK)

Limit theorems for CBI processes

Three categories

- Define $b := \Psi'(0+)$.
 - $b \in (-\infty, 0)$: supercritical case
 - b = 0: critical case
 - $b \in (0,\infty)$: subcritical case

For any $t \ge 0$, let $\lambda \mapsto \eta_t(\lambda)$ be the inverse map of $\lambda \mapsto v_t(\lambda)$.

Theorem (Pinsky (1972), Li (2010))

Consider a conservative CBI process $(Y_t, t \ge 0)$.

	$\int_0 \frac{\Phi(u)}{ \Psi(u) } du < \infty$	$\int_0 \frac{\Phi(u)}{ \Psi(u) } du = \infty$	
<i>b</i> < 0	$\eta_t(\lambda) Y_t \stackrel{d}{\to} proper$	$\eta_t(\lambda)Y_t \stackrel{p}{\to} \infty$	
$b \ge 0$	$Y_t \xrightarrow{d} proper$	$Y_t \stackrel{p}{\to} \infty$	

• In the non-critical case, the condition $\int_0 \frac{\Phi(u)}{|\Psi(u)|} du < \infty$ is equivalent to $\int_0^\infty \ln(u)\nu(du) < \infty$ where ν is the immigration measure.

イロト イポト イヨト イヨト 二日

Consider a super-critical $CBI(\Psi, \Phi)$ process. Let $0 < \lambda < \rho$. Then, $\eta_t(\lambda)Y_t \xrightarrow[t \to \infty]{} W^{\lambda} \mathbb{P}_x$ -a.s. where W^{λ} is a non-degenerate proper random variable with Laplace exponent

$$\mathbb{E}_{x}[e^{-\theta W^{\lambda}}] = \exp\left(-xv_{-\ln\theta/b}(\lambda) + \int_{0}^{v_{-\ln\theta/b}(\lambda)} \frac{\Phi(u)}{\Psi(u)} du\right)$$

• If $\int_{t\to\infty}^{\infty} (x \ln x) \pi(dx) < \infty$ then $\eta_t(\lambda) \underset{t\to\infty}{\sim} K_{\lambda} e^{bt}$ for some constant $K_{\lambda} > 0$, where π is the branching measure.

Theorem (Li-M. (2015))

Consider a sub-critical CBI(Ψ, Φ) process with Grey's condition. If $\int_{1}^{\infty} u^{\delta} \nu(du) < \infty$, then it is exponentially ergodic.

Consider a super-critical $CBI(\Psi, \Phi)$ process. Let $0 < \lambda < \rho$. Then, $\eta_t(\lambda)Y_t \xrightarrow[t \to \infty]{} W^{\lambda} \mathbb{P}_x$ -a.s. where W^{λ} is a non-degenerate proper random variable with Laplace exponent

$$\mathbb{E}_{x}[e^{-\theta W^{\lambda}}] = \exp\left(-xv_{-\ln\theta/b}(\lambda) + \int_{0}^{v_{-\ln\theta/b}(\lambda)} \frac{\Phi(u)}{\Psi(u)} du\right)$$

• If $\int_{t\to\infty}^{\infty} (x \ln x) \pi(dx) < \infty$ then $\eta_t(\lambda) \underset{t\to\infty}{\sim} K_{\lambda} e^{bt}$ for some constant $K_{\lambda} > 0$, where π is the branching measure.

Theorem (Li-M. (2015))

Consider a sub-critical CBI(Ψ, Φ) process with Grey's condition. If $\int_1^\infty u^\delta \nu(du) < \infty$, then it is exponentially ergodic.

Let $(Y_t, t \ge 0)$ be a supercritical CBI (Ψ, Φ) . Assume $\int_0 \frac{\Phi(u)}{|\Psi(u)|} du = \infty$. Then, there exists no deterministic renormalization function $(\eta(t), t \ge 0)$ such that $\eta(t)Y_t \xrightarrow[t \to \infty]{} V$ almost-surely for some non-degenerate random variable *V*.

Theorem (Duhalde-Foucart-M. (2014))

A (sub)critical CBI(Ψ, Φ) process is recurrent or transient according as

$$\mathcal{E} := \int_0 \frac{dx}{\Psi(x)} \exp\left(-\int_x^1 \frac{\Phi(u)}{\Psi(u)} du\right) = \infty \text{ or } < +\infty.$$

Let $(Y_t, t \ge 0)$ be a supercritical CBI (Ψ, Φ) . Assume $\int_0 \frac{\Phi(u)}{|\Psi(u)|} du = \infty$. Then, there exists no deterministic renormalization function $(\eta(t), t \ge 0)$ such that $\eta(t)Y_t \xrightarrow[t \to \infty]{} V$ almost-surely for some non-degenerate random variable *V*.

Theorem (Duhalde-Foucart-M. (2014))

A (sub)critical CBI(Ψ, Φ) process is recurrent or transient according as

$$\mathcal{E} := \int_0 \frac{dx}{\Psi(x)} \exp\left(-\int_x^1 \frac{\Phi(u)}{\Psi(u)} du\right) = \infty \text{ or } < +\infty.$$

イロト イポト イヨト イヨト 二日

To understand the paper of Pinsky (1972) published in Bulletin of The American Mathematical Society, which has no proof for any result presented.

THEOREM 2. Let $X = (x_t, P_x)$ be a conservative CBI process with $-\infty < \rho < 0$. For x > 0 let

$$H(x) = \int_{e^{-x}}^{1} \frac{F(u)}{R(u)} du, \quad m(x) = \exp(H(\log x)).$$

Assume that as $x \to \infty$, we have

(C1) $H(x) \to \infty$,

(C2) $xH'(x) \to 0.$

Then for $0 \leq u \leq 1$,

$$(*) \qquad P_x\{m(x_t)/m(e^{ct}) \leq u\} \to u^{1/c},$$

as $t \to \infty$, here $c = -\rho < 0$.

Weak law: $\int_0 \frac{\Phi(u)}{|\Psi(u)|} du = \infty$

Theorem (Foucart, M., Yuan (2020+))

Let $(Y_t, t \ge 0)$ be a non-critical CBI (Ψ, Φ) . Then, for all $x \ge 0$, we have

$$r_t(1/Y_t) := \int_{v_t(1/Y_t)}^{1/Y_t} \frac{\Phi(u)}{\Psi(u)} du \stackrel{d}{\longrightarrow} e_1, \text{ as } t \to +\infty \text{ under } \mathbb{P}_x$$

where e_1 is an exponential random variable with parameter 1.

Corollary

Assume $\int_0 \frac{\Phi(u)}{|\Psi(u)|} du = \infty$ and that the process is non-critical. Let $(Y_t, t \ge 0)$ and $(\tilde{Y}_t, t \ge 0)$ be two independent $\text{CBI}(\Psi, \Phi)$ processes started from 0. Then

$$\mathbb{P}(Y_t/\tilde{Y}_t \xrightarrow{t\to\infty} 0) = \mathbb{P}(Y_t/\tilde{Y}_t \xrightarrow{t\to\infty} \infty) = \frac{1}{2}.$$

Weak law: further development

Fix λ_0 such that $\lambda_0 \in (0, +\infty)$ in the (sub)critical case and $\lambda_0 \in (0, \rho)$ in the supercritical case. Put

$$arphi(\lambda) = \int_{\lambda}^{\lambda_0} rac{du}{|\Psi(u)|}, \quad 0 < \lambda < \lambda_0.$$

The mapping $\varphi : (0, \lambda_0) \to (0, +\infty)$ is strictly decreasing, write g for its inverse mapping, g is a strictly decreasing continuous function on $(0, \infty)$, and

$$\lim_{x\to\infty}g(x)=0,\quad \lim_{x\to0}g(x)=\lambda_0.$$

we introduce H(x) to characterize the divergence of the integral:

$$H(x) := \begin{cases} \frac{1}{|b|} \int_{e^{-x}}^{1} \frac{\Phi(u)}{u} du, \text{ if } b \in (-\infty, 0) \cup (0, \infty); \\ &, \quad x \ge 0 \\ \int_{g(x)}^{\lambda_0} \frac{\Phi(u)}{|\Psi(u)|} du, \text{ if } b = 0 \end{cases}$$

Central South University 20

- (S) (slow-divergence) $xH'(x) \to 0$ as $x \to +\infty$ and $H(x) \to +\infty$;
- (L) (log-divergence) $xH'(x) \rightarrow a$ for some constant a > 0 as $x \rightarrow +\infty$;
- (F) (fast-divergence) $xH'(x) \to +\infty$ as $x \to +\infty$ and H' is regularly varying at $+\infty$.

In the non-critical case, in terms of the tail of the immigration measure ν : (S) (slow-divergence) $\bar{\nu}(x) \ln x \to 0$ as $x \to \infty$ and $\int_{1}^{\infty} \frac{\bar{\nu}(x)}{x} = \infty$;

(L) (log-divergence) $\bar{\nu}(x) \ln x \to c$ for some constant c > 0 as $x \to \infty$;

(F) (fast-divergence) $\bar{\nu}(x) \ln x \to \infty$ as $x \to \infty$ and $\bar{\nu}$ is slowly varying at ∞ .

In the non-critical case, in terms of the tail of the immigration measure ν : (S) (slow-divergence) $\bar{\nu}(x) \ln x \to 0$ as $x \to \infty$ and $\int_{1}^{\infty} \frac{\bar{\nu}(x)}{x} = \infty$;

(L) (log-divergence) $\bar{\nu}(x) \ln x \to c$ for some constant c > 0 as $x \to \infty$;

(F) (fast-divergence) $\bar{\nu}(x) \ln x \to \infty$ as $x \to \infty$ and $\bar{\nu}$ is slowly varying at ∞ .

In the non-critical case,

- If $\bar{\nu}(x) \sim \frac{1}{\ln x \ln \ln x}$ as $x \to \infty$, then $H(x) \sim (\ln \ln x)/|b|$ and $H'(x) \sim 1/(|b|x \ln x)$. Condition (S) is satisfied.
- 2 If $\bar{\nu}(x) \sim c/\ln x$ for some constant c > 0, as $x \to \infty$, then $H'(x) \sim c/(|b|x)$. Condition (L) is satisfied.
- So If $\bar{\nu}(x) \sim \frac{\ln \ln x}{(\ln x)^{\delta}}$, $(0 < \delta \le 1)$ as $x \to \infty$, then $H'(x) \sim (x^{-\delta} \ln x)/|b|$. If as $x \to \infty$, $\bar{\nu}(x) \sim 1/(\ln \ln x)$, then $H'(x) \sim 1/(|b| \ln x)$. Both cases satisfy Condition (F).

□ ▷ < 률 ▷ < ≣ ▷ < ≣ ▷ < ≡ ○ Central South University 20 Set

$$\rho_t := \left\{ \begin{array}{ll} 1, \text{ if } b > 0; \\ v_{-t}(\lambda_0), \text{ if } b < 0. \end{array} \right.$$

Theorem

(i) If Condition (S) holds, let $m(x) := \exp(\int_{1/x}^{1} \frac{\Phi(u)}{\Psi(u)} du)$ for x > 0. Then

$$\frac{\ln \rho_t Y_t}{t} \xrightarrow{p} 0 \quad \text{and} \quad m(\rho_t Y_t)/m(e^{|b|t}) \xrightarrow{d} U, \text{ as } t \to \infty,$$
(1)

□ ▷ < 률 ▷ < ≣ ▷ < ≣ ▷ < ≡ ○ Central South University 20

where U is uniformly distributed on [0, 1].

Theorem (continued)

(ii) If Condition (L) holds, then

$$\frac{\ln \rho_t Y_t}{t} \stackrel{d}{\longrightarrow} |b| U_L, \text{ as } t \to \infty,$$

where $\mathbb{P}(U_L \le \lambda) = \left(\frac{\lambda}{1+\lambda}\right)^a, \quad \lambda \ge 0.$

(2)

イロト イポト イヨト イヨト

Central South University 20

Chunhua Ma (NK)

Limit theorems for CBI processes

Theorem (continued)

(iii) If Condition (F) holds with $0 \le \delta \le 1$, then

$$\frac{\ln Y_t}{t} \xrightarrow{p} \infty \quad \text{and} \quad t\Phi(1/Y_t) \xrightarrow{d} e_1, \text{ as } t \to \infty.$$

In particular, if $0 < \delta \leq 1$, then we have

$$h(t) = t^{1/\delta} L^*(t)$$
 and $\frac{\ln Y_t}{h(|b|t)} \xrightarrow{d} U_F$, as $t \to \infty$, (3)

イロト イポト イヨト イヨト 三日

Central South University 20

where L^* is some slowly varying function at ∞ and U_F follows the extreme distribution given by $\mathbb{P}(U_F \leq \lambda) = \exp(-1/\lambda^{\delta}), \quad \lambda \geq 0.$

Proposition

Let $(\eta_t, t \ge 0)$ be a subordinator with Laplace exponent Φ . Assume that Φ is slowly varying at 0, then

$$t\Phi(1/\eta_t) \stackrel{d}{\longrightarrow} \mathbf{e}_1 \text{ as } t \to \infty.$$

Chunhua Ma (NK)

Limit theorems for CBI processes

THEOREM 2. Let $X = (x_t, P_x)$ be a conservative CBI process with $-\infty < \rho < 0$. For x > 0 let

$$H(x) = \int_{e^{-x}}^{1} \frac{F(u)}{R(u)} du, \quad m(x) = \exp(H(\log x)).$$

Assume that as $x \to \infty$, we have

(C1) $H(x) \to \infty$,

(C2) $xH'(x) \to 0.$

Then for $0 \leq u \leq 1$, $P_x\{m(x_t)/m(e^{ct}) \leq u\} \rightarrow u^{1/c}$,

as $t \to \infty$, here $c = -\rho < 0$.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Critical case

Suppose that π satisfies

$$\bar{\pi}(u) \underset{u \to \infty}{\sim} -\frac{1}{\Gamma(-\alpha)} u^{-1-\alpha} \ell(u),$$

where $\bar{\pi}(u) = \pi(u, \infty)$ for $u > 0, 0 < \alpha < 1$ and ℓ is slowly varying at ∞ .

Theorem

(i) If Condition (S) holds, then

$$\frac{m(Y_t)}{m(1/g(t))} \stackrel{d}{\longrightarrow} V \text{ as } t \to \infty,$$

where *V* is uniformly distributed on [0, 1]. (ii) If Condition (L) holds, then

$$g(t)Y_t \stackrel{d}{\longrightarrow} V_L \text{ as } t \to \infty,$$

where $\mathbb{E}[e^{-\lambda V_L}] = (1 + \lambda^{\alpha})^{-a}, \forall \lambda \ge 0.$

Theorem (continued)

(iii) If Condition (F) holds with $\delta > 0$, then

$$\varrho_t Y_t \xrightarrow{d} V_F \text{ as } t \to \infty$$
(4)

Central South University

where $\mathbb{E}[e^{-\theta V_F}] = \exp(-\theta^{\delta\alpha})$, for all $\theta \ge 0$, with $\varrho_t = \Phi^{-1}(1/t) = t^{-1/(\delta\alpha)}\bar{\ell}(t)$ as $t \to \infty$ for some slowly varying function $\bar{\ell}$ at ∞ .

In fact, (4) is equivalent to

$$t\Phi(1/Y_t) \stackrel{d}{\longrightarrow} V_F^{-\delta\alpha}.$$

If Condition (F) holds with $\delta = 0$, then $t\Phi(1/Y_t) \stackrel{d}{\longrightarrow} e_1$ as $t \to \infty$.

Thank you for your attention!

Chunhua Ma (NK)

Limit theorems for CBI processes