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CSBPs

Definition (branching property and CSBP)

A non-negative Markov process (X;(x),# > 0) is a CSBP if for any x,y € R,

X,(x +) £ X,(x) + X (y)

where (X;(y), ¢ > 0) is an independent copy of (X;(y), > 0).

This ensures the existence of a map 1 — v,(\) s.t.

Ele @] = exp(—xvi(N)) and ve,(A) = vy 0 vi(N).
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Theorem (Characterization: Jirina (1958), Lamperti (1967))

t — v;(\) is the unique solution to the differential equation

0

Ty = TN, W) =

where p := inf{z > 0;¥(z) > 0} is the largest positive root of a Lévy-
Khintchine function

2

o =
V(q) = 7612 — Bq +/0 (7% — 1 + gxl.<i) m(dx)
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Galton-Watson branching process

Definition

Consider Galton-Watson branching processes defined inductively by
Zn+1 :Zgl(n)’ ZO: 1,
i=1

where 51.("): the number of children of i at generation » (i.i.d.) and Z, = the
number of particles at generation 7.

v

o B¢\ = 1 (critical), Var(¢l") = 02 < oc.
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Kolmogorov’s and Yaglom’s results

(a) (Kolmogorov (1938)) P(Z, > 0) ~ 2/no? as n — oo.

(b) (Yaglom (1947)) P(Z,/n € -|Z, > 0) > e, where e is exponential with
mean o2 /2.
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Kolmogorov’s and Yaglom’s results

(a) (Kolmogorov (1938)) P(Z, > 0) ~ 2/no? as n — oo.
(b) (Yaglom (1947)) P(Z,/n € -|Z, > 0) > e, where e is exponential with
mean o2 /2.

@ Consider a sequence of critical GW branching processes {Z,(,") :n € N}
with initial conditions Z(g") satisfying Z(g") /n — x. Define

X" =z /n.

nt|

Then X,(") converges weakly to a Poisson sum of independent exponential
masses, denoted by X (x).
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Feller’s Theorem: CSBPs

o Ele W] = exp(—xv, (X)) and v, () = ﬁ
=

Theorem (Feller (1931, 1951))

X" £ X in D(R ), where X is the unique solution of

X (x) —x+a/ /X, (x)dB

where B is one-dimensional Brownian motion.

.
| A

Theorem (Dawson-Li (2012))

t rXs(x) t opoo X (x)
X)) =x+ O'/ / W(ds,du) + / / / zNo(ds, dz, du),
0 JO 0 JO 0

where W(ds,du) white noise on R% with intensity dsdu, and N(ds, dz, du)
compensated Poisson random measure on R3 with intensity dsm (dz)du
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CSBP with immigration: CBI

e Laplace exponent of subordinator:
d(q) =pg+ fooo(l — e " (du)
e Laplace exponent of a a spectrally positive Lévy process with finite mean:
U(q) =bg+ %azqz + fooo(e_q“ — 14 qu)7(du)

where [, (u A u?)(du) < oc.

Theorem (Kawazu-Watanbe (1971))
A CBI process with branching and immigration mechanisms ¥ and ®, is a
strong Markov process (Y;,# > 0) taking values in [0, 00) whose transition
kernels are characterized by

e ] = exp (—on) - [ 20u0)as)
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Lamperti transformation for CBI processes

Theorem (Emilia Caballero et al. 2013)

A CBI (¥, @) process with initial value x, denoted by Y;, solving the functional
equation

Yt:x—i_é‘fotY;dS—i_nt

where &; is a spectrally positive Lévy process with Laplace exponent W and 7,
is a Lévy subordinator with Laplace exponent .

v
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The Alpha-CIR model

«
__ 9%

Consider a special CBI process, where ¥ (q) = aq + %zqz = os(ral2) q“ and

®(gq) = abgq, given by
dV, = a(b—V,)dt+a\/VidB, + oz §/VidZ,

where
e B = (B;,t > 0) a Browinan motion

e Z = (Z;,t > 0) a spectrally positive a-stable compensate Lévy process
with parameter « € (1,2]

@ Pathwise uniqueness of SDE, Fu and Li (SPA, 2010)

@ The case of @ = 2, Cox-Ingersoll-Ross model (Econometrica, 1985).
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The Alpha-CIR as interest rate model

@ Current sovereign bond markets with persistency of low interest rates and
significant fluctuations at local extent.
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Figure: 10 years interest rates of Euro area countries.
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The zero-coupon price

Consider a zero-coupon bond of maturity 7 at time t < T

B(t,T) = E[exp{ — /tT Vsds}’]-}]
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The zero-coupon price

Consider a zero-coupon bond of maturity 7 at time t < T

B(t,T) = E[exp{ — /tT Vsds}’]:t]

Proposition (Jiao-M.-Scotti, Finance Stoch., 2017)

(a) The bond price B(0, T) is decreasing with respect to c.
(b) J; the number of jumps of V with jump size larger than y in [0, 7],

t
E[e_Pny] = exp (—l(p,y, H)ro — ab/ I(p,y, s)ds)
0
where [(p, y, t) is the unique solution of the following equation

T2 _ o5 [ (1= 01009 1o ) — 2O1(p,3,1),
y

with initial condition /(p,y,0) =0
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Conclusion: interpret the low interest

15=0.05,2=0.1,b=0.3, 6=0.1,5,=0.3
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Figure: Bond price is decreasing w.r.t. «, which inversely related to the tail fatness.
curve CIR (in red) corresponds to oz = 0

@ The expected (first) Large jump time is increasing with «
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The Alpha-CIR as stochastic volatility

Consider the Alpha-Heston model:

dS[ = S[(rdt + VldWl‘)
th = a(b — Vt)d[ + o/ thBl‘ + oz a\/ thZ[
where V follows the a-CIR model.

@ The case of @ = 2, Heston stochastic volatility model (Review of Finan-
cial Studies, 1993)
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Implied volatility at extreme strikes for VIX option

Consider Yyix (7, k) be the implied volatility of call options written on VIX
with maturity 7" and strike K = ef

Proposition (Jiao-M.-Scotti-Zhou, Math. Finance, 2021)

The right wing of Yvix (7, k) has the following asymptotic shape:

2 1/2
EVIX(T, k) ~ (dj(Ta)) \//_C, k — +oo.
where

V(@) =2—-4(V¢*+q—q)
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Implied volatility at extreme strikes for VIX option

Proposition (continued)

The left wing of Xyix(7,k) has the following asymptotic shape as k |
Tlog B(A):

—1

@ ifo >0, then Sy (T, k) ~ Dy (— log (¢ — MB(A))) ,
2—

@ ifo =0, then X2, (T, k) ~ Dy <e VB( )a
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Implied volatility: an upward-sloping smile

o3
\,

Figure: The implied volatility curves of the VIX options for different values of o with
a=5b=0.144,0 =0.25,0y =0.3,p=0,and T = 0.25

o Implied volatility of VIX options for the Heston model given by Nicolato
et al. (2017): downward sloping!
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The simulation of the VIX

The following Figure provides a simulation of the variance process V for a
period of T = 14, in comparison with the empirical VIX data (from 2004 to
2017). The parameters: a = 5,b = 0.14, 0 = 0.08, 0z = 1 and o = 1.26.

@ Jiao-M.-Scotti-Sgarra (Energy Economics, 2019): power price on Italian
market (2004-2015), o = 1.5.
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Three categories

Define b := ¥/ (0+).
e b € (—00,0): supercritical case
e b = 0: critical case
e b € (0,00): subcritical case

Superecritical Critical Subcritical
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Asymptotic behaviors: known

For any # > 0, let A — 7,(\) be the inverse map of A\ — v,(\).

Theorem (Pinsky (1972), Li (2010))

Consider a conservative CBI process (¥;,7 > 0).

d(u
Jo |w(u)|d”< 0o | fo iy

Yt proper Y: B
b>0 Y: —>proper Y, B

v

@ In the non-critical case, the condition fo %du < o0 is equivalent to

J°° In(u)v(du) < oo where v is the immigration measure.
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Asymptotic behaviors: || %du < 00

Theorem (Foucart-M.-Yuan (2020+))

Consider a super-critical CBI(¥, ®) process. Let 0 < A < p. Then,
n(N)Y; =2 WA P,-a.s. where W is a non-degenerate proper random variable
oo

with Laplace exponent

o ) V_otna/n(N) O (u)
E,[e ] = exp < xV_1ma/b(A) "‘/0 \Il(u)du

.

o If [*(xInx)m(dx) < oo thenn,()) e Ke” for some constant Ky > 0,

where 7 is the branching measure.
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Asymptotic behaviors: || %du < 00

Theorem (Foucart-M.-Yuan (2020+))

Consider a super-critical CBI(¥, ®) process. Let 0 < A < p. Then,
n(N)Y; =2 WA P,-a.s. where W is a non-degenerate proper random variable
oo

with Laplace exponent

o ) V_otna/n(N) O (u)
E,[e ] = exp < W _1n9/5(A) "‘/0 \Il(u)du

.

o If [*(xInx)m(dx) < oo thenn,()) e Ke” for some constant Ky > 0,

where 7 is the branching measure.

Theorem (Li-M. (2015))

Consider a sub-critical CBI(W,®) process with Grey’s condition. If
| 1°° u‘szx(du) < o0, then it is exponentially ergodic.
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Asymptotic behaviors: || %du = 00

Theorem (Foucart-M.-Yuan (2020+))

Let (Y;,7 > 0) be a supercritical CBI(W, ®). Assume fo |\I, du = o00. Then,
there exists no deterministic renormalization function (7(t), t > 0) such that
n(t)Y; = V almost-surely for some non-degenerate random variable V.

—00
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Asymptotic behaviors: || %du = 00

Theorem (Foucart-M.-Yuan (2020+))

Let (Y;,7 > 0) be a supercritical CBI(W, ®). Assume fo |\Ij du = o00. Then,
there exists no deterministic renormalization function (7(t), t > 0) such that
n(t)Y; = V almost-surely for some non-degenerate random variable V.

—00

Theorem (Duhalde-Foucart-M. (2014))

A (sub)critical CBI(W, ) process is recurrent or transient according as

& = /0 \de(z) exp (— /xl iggw) =00 or < +0o0.
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Extra motivation

To understand the paper of Pinsky (1972) published in Bulletin of The Ameri-
can Mathematical Society, which has no proof for any result presented.

THEOREM 2. Let X = (x,, P,) be a conservative CBI process with — oo < p
< 0. For x >0 let

H(x) = J‘:_x % du, m(x) = exp(H(log x)).
Assume that as x — o0, we have
(€1 H(x) » oo,
(€2) xH'(x) = 0.
Then for0 S u =1,
(*) P {m(x,)/m(e”) < u} > u'’,
ast— oo, herec = —p < 0.
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Weak law: [) it-du =

Theorem (Foucart, M., Yuan (2020+))

Let (Y;,t > 0) be a non-critical CBI(W, ®). Then, for all x > 0, we have

I/Y{ @
r(1/Y;) == (1) du -4 e1, as t — +oo under P,
\\
Vt(l/Yt) (M)

where e; is an exponential random variable with parameter 1.

Assume [, 3 Zg‘du = oo and that the process is non-critical. Let (¥;,7 > 0)
and (Y, > 0) be two independent CBI(¥, ®) processes started from 0. Then

P(Y,/Y, —20)= P(Y,/Y, 2 00) =7
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Weak law: further development

Fix Ao such that \y € (0, +00) in the (sub)critical case and A\ € (0, p) in the
supercritical case. Put

A du
)\:/ —, 0< A< A
PN= ) 0

The mapping ¢ : (0,A0) — (0,400) is strictly decreasing, write g for its
inverse mapping, g is a strictly decreasing continuous function on (0, o), and
lim g(x) =0, limg(x) = Ao.
x—0

X—00

we introduce H(x) to characterize the divergence of the integral:

1 [ o
‘b‘/ i”‘)du, it b € (—o00,0) U (0, 00);

Ao
/ 2 b =0
g(x) |\Ij(u)|
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Three conditions

(S) (slow-divergence) xH'(x) — 0 as x — +o0 and H(x) — 400 ;
(L) (log-divergence) xH'(x) — a for some constant a > 0 as x — +00;

(F) (fast-divergence) xH'(x) — 400 as x — 400 and H' is regularly varying
at +o0.
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Three conditions

In the non-critical case, in terms of the tail of the immigration measure v:

(S) (slow-divergence) 7(x) Inx — 0 as x — oo and foo ) 03

(L) (log-divergence) (x) Inx — ¢ for some constant ¢ > 0 as x — 00;

(F) (fast-divergence) (x) Inx — oo as x — oo and 7 is slowly varying at
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Three conditions

In the non-critical case, in terms of the tail of the immigration measure v:

(S) (slow-divergence) 7(x) Inx — 0 as x — oo and foo ) 03

(L) (log-divergence) (x) Inx — ¢ for some constant ¢ > 0 as x — 00;

(F) (fast-divergence) (x) Inx — oo as x — oo and 7 is slowly varying at
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In the non-critical case,

Q If ¥(x) ~ 5 as x — oo, then H(x) ~ (Inlnx)/|b| and H'(x) ~
1/(|b|xInx). Condition (S) is satisfied.

@ If 7(x) ~ ¢/Inx for some constant ¢ > 0, as x — oo, then H'(x) ~
¢/(|b|x). Condition (L) is satisfied.

Q Ifi(x) ~ (lﬁlli)xzs, (0 <6 < 1)asx— oo, then H'(x) ~ (x°Inx)/|b.

If as x — oo, U(x) ~ 1/(Inlnx), then H'(x) ~ 1/(|b|Inx). Both cases
satisfy Condition (F).
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Non-critical case

Set
[ 1,ifb >0
Pr= voi(), if b < 0.

Theorem

(i) If Condition (S) holds, let m(x) := exp( [}, giadu) for x > 0. Then

In p,Y,
L L0 and m(p¥)/m(e) <5 U ast s 00, (D)

where U is uniformly distributed on [0, 1].
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Non-critical case

Theorem (continued)

(i1) If Condition (L) holds, then
In psY,
% L 1b|UL, as £ — oo, )
_ ()
where P(U < \) = <m> . A>0.
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Non-critical case

Theorem (continued)
(iii) If Condition (F) holds with 0 < § < 1, then

InY,
Bl 7y and t@(l/Yt)i>e1,ast—>oo.

In particular, if 0 < § < 1, then we have

ln Yl‘ d
— U, ast — oo, A3)
h(|blz)

where L* is some slowly varying function at co and Up follows the extreme
distribution given by P(Ur < ) = exp(—1/X?%), A >0.

h(t) = 1'/°L*(t) and

Chunhua Ma (NK) Limit theorems for CBI processes



Subordinator

Proposition

Let (1;,¢t > 0) be a subordinator with Laplace exponent ®. Assume that ® is
slowly varying at 0, then

t®(1/n,) s e ast — oo.
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A small correction for Pinsky’s result

THEOREM 2. Let X = (x,, P,) be a conservative CBI process with — o0 < p
< 0.Forx > 0let

H(x) = ,1-,%du’ m(x) = exp(H(log x)).
Assume that as x = o0, we have
(C1) H(x) - oo,
(C2) xH'(x) = 0.
Then for0 S u =1, g ) S
(*) P,?{m(X.)/M(e"éMu}}—' uD“M
ast— oo, herec = —p < 0.
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Critical case

Suppose that 7 satisfies

m(u) ~ —

u—oo  T'(—a)

where 7(u) = 7(u,00) foru > 0,0 < o < 1 and ¢ is slowly varying at co.

(i) If Condition (S) holds, then

m(Y;)
m(1/g(t))

where V is uniformly distributed on [0, 1].
(ii) If Condition (L) holds, then

d
— Vast— oo,

g(1Y, 5 Vyast — oo,

where E[e=*V:] = (1 + \¥)74, VA > 0.
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Critical case

Theorem (continued)
(iii) If Condition (F) holds with § > 0, then

oY, -% Veast — oo )

where E[e "] = exp(—0°*), forall§ > 0, with o, = ®~'(1/1) =
~1/(0a)g (t) as t — oo for some slowly varying function ¢ at co.

In fact, (4) is equivalent to
1(1/Y,) -4 vy

If Condition (F) holds with 6 = 0, then t®(1/Y;) 2y ey ast — 0.
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Thank you for your attention!
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